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Abstract

Let G be a complex reductive group and let I be a non-empty finite set. The aim of this paper
is to prove that an inclusion of open balls D’ C D on C induces a stratified homotopy equivalence
between the respective Beilinson—Drinfeld Grassmannians Grg pir — Grg pr, a long-standing
folklore result. We also prove an analogous result at the level of Ran Grassmannians. We use
a purely algebraic approach, showing that automorphisms of algebraic curves can be lifted to
automorphisms of the Beilinson—Drinfeld Grassmannian itself. As a consequence, the homotopies
appearing in the usual statement can be taken to be stratified isotopies.

We then prove an analogous result for L G¢r, the Beilinson-Drinfeld version of the arc group.
We conclude by checking the compatibility between the found isotopies, enhancing the first
statement to an equivariant one.
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1 Introduction

Let G be a complex reductive group and let Grg be the affine Grassmannian associated to G. It
parametrizes G-torsors on the affine line A} together with a trivializion at the origin {0} € AL(C):

Grg(R) ~ {F € Bung(AkL), o trivialization of F on AL\ {0} R} /isomorphism

for any C-algebra R. More generally, given a connected smooth curve X over C and a finite non-empty
set I, the Beilinson-Drinfeld Grassmannian Grg x: (Recall 3.9) is the functor parametrizing

Grg x1(R) ~{x] € X!(R), F € Bung(XR), a trivialization of F on Xg \ Tz, } /isomorphism

where I'y, is the union of the graphs of points z; in X (see Notation 3.8). To these algebraic
objects, one can associate their analytifications Grgy', Gry' 7, which consist of their sets of C-points
Grg(C) with the complex-analytic topology (see Theorem 2.9 and Theorem 4.1).

Letting I vary in the category Fin>1 gurj of non-empty finite sets with surjections between them, one
can take the colimit of the Grg y1’s in the category of PSh(Affc), and obtain the so-called Ran-
Grassmannian Grg Ran(x). Once more, we can consider its underlying topological space Gr?}fRan( X)
with the complex-analytic topology, defined as the colimit of the Grgxl’s in the category of
topological spaces (see Theorem 2.9 and Theorem 4.1).

The spaces Grg', GraGn,XI and GrgRan(X) carry stratifications, induced by the stratification in

Schubert cells of the affine Grassmannian and the so-called incidence stratification of X! (Recall 3.5
and Recall 3.15). This is formalized in Theorem 2.9 and Theorem 4.1.

1.1 Main results

Consider an open metric disk D in (AL)* = C, i.e. an open ball B(z,7) C C centered in z € C with
radius 7 € Ryg. Denote by Grg pr the fiber product Grzn(Al), xcr D! of stratified spaces. In the
) A

same way, one defines Grg Ran(p) to be the restriction of Gr%?Ran( a1y tO Ran(D).
b 3 C

Our main result concerns the existence of a stratified homotopy equivalence between these spaces
(see Definition 4.12).

Theorem A (Corollary 4.14, Corollary 4.15). Let D" C D C C be two metric open disks. The induced
open embedding i : Grg pin — Grg pr is a stratified homotopy equivalence, and the homotopies
involved can be taken to be isotopies.

The same is true for the open embedding Grg Ran(p')y <+ GrG Ran(D)-

As a Corollary, we get the following folklore result (see [Lurl7, §5.5.4] for notations).

Corollary B (Theorem 4.32, cf. [HY19, Theorem 3.10]). Consider the category StrTop of stratified
topological spaces. Let W be the family of stratified homotopy equivalences. For any metric disk D,
Grg Ran(p) carries a non-unital Ey-algebra structure in StrTop[W Y] with respect to the Cartesian
symmetric monoidal structure independent of D.

The open embeddings in Theorem A actually satisfy an equivariance property. Indeed, let L™ G 1
be the Beilinson-Drinfeld version of the arc group (Recall 3.27). One again can consider its
underlying topological space L+G_§?I with the complex-analytic topology and its restriction LT G pr ==
L+G§§‘I X (xam)I D!. Given two open metric disks D’ € D C C, we still get that the induced open
embedding it : LTG il < L*Gpr is a stratified homotopy equivalence, and the homotopies involved
can be taken to be isotopies as well (Proposition 4.17).



Theorem C (Theorem 4.18, Theorem 4.19). Given two metric open disks D' C D C C, all the
mentioned isotopies are compatible with the action of L™ G pr on Grg pr. More precisely, there are
stratified isotopies \Ilféfﬁv and Wiy ) fitting in

equiv
V1o

[0, 1] X (L+Gcl Xr GI‘G7cl> L+Gcl Xr GTG7cl

| |

L'
[0, 1] X GI'G’(CI 0.1

GI'G7CI,
which provide stratified isotopies for the diagram

L*G i % G X 1A G Xt G
D/I D/I rGjD/I — DI DI rG7DI

! |

GI‘G?D/I

GI‘G7DI

where the vertical maps are induced by the action. An analogous statement is true at the truncated
(N

level (namely for LG pr X pr Gr, [))I for any N € N and m > mp 1), and at the Ran level.

1.2 Motivation

To the best of our knowledge, the first time that a statement like Corollary B appeared is in [GL,
Remark 9.4.20]. They implicitly compare the Es-coalgebra structure on cochains C*(Grg; Z¢) coming
from the Eg-structure on Grg (a direct consequence of the homotopy equivalence Grg' ~ QG*" =
Q?BG", see e.g. [Nad03, Theorem 2.1], [PS86, Theorem 8.6.2, 8.6.3]) and the Ey-structure coming
from the sheaf

A : Op(Ran(C))°® — Ch*(Modyg,)

sending an open U of Ran(C) into C*(Grg ran(c)|u; Ze). The reason why the sheaf A has an Eo-
structure is exactly that the functor Grg ran(—) has it. This principle constitutes the main motivation
for our results.

The first time that Corollary B has been stated explicitly, again to our knowledge, is in [HY19,
Theorem 3.10]. The relationship between the present paper and those two results can be summarized
as follows.

» Theorem A implies that the inclusion maps i : Grg Ran(p’) = G Ran(p) induce isomorphisms
in cohomology, claimed that appeared in the sketch of proof of [HY19, Proposition 3.17] (which
is the main tool used to prove [HY19, Theorem 3.10]). Indeed Theorem A provides a homotopy
equivalence between the two spaces, which implies a cohomological equivalence.!

o [HY19, Theorem 3.10 and Proposition 3.17] are statements in the stable setting, i.e. they

concern L°(Grg), E?ﬁ(Gr?;nRan( Al))’ etc.. In particular, [HY19, Proposition 3.17] says that
) C

the map X°(Gry') — Ef(GrgRan(Aé)) associated to the choice of any point x € AL(C) is an

equivalence of spectra. The authors then prove that ES’FO(GanRan( Al)) carries an [Es-structure
) C

and therefore this can be transferred to ¥%°Grg via the mentioned equivalence of spectra.

Tt would be nice to have a purely cohomological argument that does not use a homotopy-theoretic statement.



The present work is a first step in the direction of an unstable version of this result, namely
that Gr¥' admits a non-unital Es-algebra structure in StrTop[W ~!]. Indeed, by Corollary B,
Grg Ran(p) has a non-unital Eg-structure in StrTop[W ~!]: so now it remains to inspect the map
Grg < Grg Ran(p) and prove that the Eo-structure can be transferred to the left-hand-side, in
analogy to the stable result.

We conclude by mentioning another motivation for Theorem A, namely Theorem C, its equivariant
version: this latter is used in [Noc20] to prove that the oo-category Cons| +gan(Gré'; A) of LTG?0-
equivariant constructible sheaves with coefficients in A-Modules carries an Eq-structure (actually an
Es-structure). Note that, for this application, it is really important to have an unstable statement.

1.3 Outline of the paper

In Section 2 we formalize the fact that the usual analytification functor (—)*" : Schi* — Top can be
enhanced to a functor between the category of stratified schemes and stratified topological spaces.
Moreover we Kan-extend it to small stratified presheaves and pro-group stratified schemes, all locally
of finite type (Theorem 2.9).

In Section 3, we present all the needed definitions and properties from the Geometric Langlands
area. In particular, we recall the definition of the affine Grassmannian, the Beilinson-Drinfeld
Grassmannian and the Ran Grassmannian. Some results are just recollections from other references,
some other are folklore properties which we prove in detail. In particular, some classical properties
in the Beilinson-Drinfeld setting extend to the Ran setting with nontrivial proof, in that many of
them are not abstractly stable under non-filtered colimits.

Section 4 is devoted to the proofs of the main results of the paper. We first observe that for any
connected smooth complex curve X there is a morphism of presheaves

Aute(X) — Aute(Grg x1)

lifting an automorphism of X to a (stratified) automorphism of the Beilinson-Drinfeld Grassmannian
Grg x1 (see Lemma 4.7 and Lemma 4.8.) In particular, one can lift affine transformations z +— az+ 3
in A}C. By taking the topological realization (via the above mentioned stratification-preserving
analytification functor) of the algebro-geometric objects recalled in Section 3, one can apply this
lifting principle to isotopically transform the restrictions Grg pr from any open metric disk D to
another. This is also true at the Ran level, i.e. there is a lifting morphism

Aute(X) — Aute(Grg ran(x))-

These arguments achieve the proof of Theorem A (see Corollary 4.14 and Corollary 4.15).

Theorem C is proven in the same way: the fact that LG s — LTGpr and L+GRan(D/) —
L*GRan( p) are stratified homotopy equivalences follows from a similar lifting principle, and the
compatibility with the action follows from the constructions.

Note that some care is needed while establishing some constructions at the Ran level, again
because many operations are not abstractly stable under general colimits: see in particular proof of
Theorem 4.1.

Finally, we deduce Corollary B from Theorem A by applying Lurie’s theorem [Lurl7, Theorem
5.4.5.15] saying that non-unital Ey-algebras with values in a symmetric monoidal category C* are
equivalent to locally constant non-unital Disk(R?)®-algebras with values in C. Here Disk(R?)® is
the operad of topological disks in the real plane, and the local constancy property corresponds to
Theorem A.



Acknowledgements

We wish to thank Jeremy Hahn and Allen Yuan for kindly providing clarifications about their paper
[HY19], and for encouraging us to provide a proof of Theorem A. We also thank Yonatan Harpaz,
Sam Raskin and Marco Volpe for fruitful discussions.

During the process of writing this paper, the first author was supported by the ERC Grant
“Foundations of Motivic Real K-theory” held by Yonatan Harpaz, and later by the grant “Simons
Collaboration on Perfection in Algebra, Geometry and Topology” co-held by Dustin Clausen.

2 Stratifications and the analytification functor

The main objects of this paper are the affine Grassmaniann Grg, the Beilinson-Drinfeld Grassman-
nians Grg x1, the Ran-Grassmannian Grg Ran(x), considered with their respective stratifications.
We want to see these objects both from the algebro-geometric and the complex-analytic point of
view.

In order to compare the two perspectives, in the present section we will formalize how to analytify
stratified schemes and stratified small presheaves, in order to obtain stratified topological spaces.

2.1 Stratified small presheaves

Let Y be a topological space. Among the slightly different definitions of stratification (see [LWY24]
for a full comparison between different definitions) we will stick to the poset-stratified one due to its
good categorical properties.

Definition 2.1. A poset-stratified space is a triple (Y, P,s: Y — Alex(P)) where
1. Y is a topological space, and P is a poset,

2. Alex : Pos — Top is the functor associating to a poset P the topological space of elements of
P endowed with the Alexandroff topology, and

3. s is a surjective continuous map.

For the sake of notation, we will often use (Y, s) to denote the triple (Y, P,s:Y — Alex(P)) and we
will refer to poset-stratified spaces simply as stratified spaces.

A map of stratified spaces is a pair (f,r) : (Y,s) — (W,s’) where f: Y — W is a continuous
map and r : P — @ is an order-preserving function such that

y — 1w

ik

Alex(P) —— Alex(Q).

commutes. We denote by StrTop the category of stratified topological spaces.

Remark 2.2. The category StrTop is complete and cocomplete. Both cocompleteness and com-
pleteness are proven in [NL19, Proposition 6.1.4.1]: there, the category considered is the one of
stratified compactly generated spaces but the proof for StrTop is the same one. Moreover: given a
small diagram A — StrTop, the colimit colimyea (Y, Pa, Sa @ Yo — Alex(P,)) is

(cggln Yo, ngln Py, s: 08.16111411 Y, — cggrqn Alex(P,) — Alex(cggln P,)).



Therefore, the underlying poset (resp. topological space) of the colimit in StrTop is the colimit in
Pos of the diagram of underlying posets (resp. topological space in Top).

For limits, the situation is slightly different: indeed in general the underlying topological space will
have a finer topology than lim,e 4 Y, in Top (the underlying poset still coincides with the limye4 Py).
Nevertheless for finite limits F' — StrTop, we still get that limye (Yo, Pa, Sa @ Yo — Alex(FP,)) is

. . . limgecp Sa 4. ~ X
(ilenflr Yy, iler% P, s: clylé% y, —ocfte, ilGHIIP Alex(P,) +— Alex(iler% P,)),
For a proof, one can easily reduce to the case of a finite product; then, one observes that the
Alexandroff topology on a product coincides with the box topology, which in turn is the same as the
product topology if the product is finite.

If no assumption is made on the shape of the limit, but the posets P, are all the same P, then
limpea (Yo, P, Sq : Yo — Alex(P)) is

(lim Y, P, s : lim Y, — Alex(P)).
acA a€cA

So also in this case the underlying topological space of the limit of the diagram in StrTop is the
limit in Top of the diagram of the underlying topological spaces.

Definition 2.3. If Y is a scheme locally of finite type over C, a stratification of Y is a stratification
(Y7 s) of the underlying topological space Y% with the Zariski topology. The triple (Y, P, s :
YZar 5 Alex(P)) is called a stratified scheme (locally of finite type over C).

A map of stratified schemes (f,r) is a map of scheme f together with an order-preserving function
r such that (f%2%,r) is a map of stratified topological spaces.

Let us denote by S‘chChEt the category of stratified schemes locally of finite type over C.

Remark 2.4. One can verify, in a manner analogous to the case of StrTop, that the category
StrSchi* admits finite limits and they have the form

Zar
lim (Ya,Pa,sa D Alex(Pa)) - (Llyier% Yo lim Po, s : (iig Ya> — lim yZar Alex(lim Pa)> .

Definition 2.5. Let C be a locally small category. A small presheaf on C is a small colimit over a
diagram of the form v : A — C — PSh(C) where C — PSh(C) is the Yoneda functor &. We denote
by PSh®™al(C) the full subcategory of PSh(C) of small presheaves.

A stratified small presheaf locally of finite type over C is then an object of PShsmaH(StrSchgt)Q.

Remark 2.6. By definition, this is the free cocompletion? of C embedded in it via the Yoneda
functor & : C = PSh®™a!(C), see [Lin74, Theorem 2.11].

By formal duality, given a locally small category C, the free completion Funsmall(C, Set)°P is
the full subcategory of Fun(C, Set)°P of small limits of the form v : A — C — Fun(C, Set)°P where
C < Fun(C, Set)°P is the co-Yoneda embedding Xx".

2.2 Stratified analytification

Let us recall the notion of the analytification functor from SGA1-XII. For this, let £¢ be the category
of locally C-ringed spaces and let 2nc the full subcategory of complex analytic spaces inside £¢.

2The category StrSchif is locally small.
3See [EBP21, Definition 4.1] for the definition of free cocompletion of a locally small category.



Theorem 2.7 ([Ray71, Thm. XII.1.1] and [Ray71, §XII.1.2]). Let Y be a scheme locally of finite
type over C. Then the functor
Homg (—,Y) : Ang® — Set

is representable by a complex analytic space an(Y'): namely there exists a map of locally C-ringed
spaces py :an(Y) =Y such that

Homygy, . (T, an(Y")) = Home (T,Y), f—¢yof

is a natural bijection (controvariant in T and covariant in'Y ). Moreover, an(Y') coincides, as sets,
with Y (C). Denote by Y the underlying topological space of an(Y)* (namely, forget the sheaf).
This then defines an analytification functor

(=)™ : Schi® - Top, Y Y™
which preserves finite limits.

We now want to enhance and extend this functor to the category of small stratified presheaves
PShsmaH(StrSChgt) and then to pro-group-objects of stratified schemes. Let us recall the definition of
the latter.

Definition 2.8. Let D be a locally small category: the category of pro-objects Pro(D) of D is the
full subcategory of Fun®™#!(D, Set)°P of small co-filtered limits of representable functors. Let C be a
category with finite products: denote by Grp(C) the category of group-objects of C. The category of
pro-group-objects ProGrp(C) of C is defined as Pro(Grp(C)).

Consider the forgetful functors which forget the datum of a stratification:

Fgt,, : StrSch}ét — Sch(lét, Fgt,. : StrTop — Top.

str str

Similarly, consider the forgetful functors which forget the group structure:

Fgty,, Grp(StrSch(lét/(KS)) — StrSch%Cft/(Y,s), Fgtgp, 1 Grp(StrTop (y gpan ) — StrTop (y, gyan-

grp

Theorem 2.9 (Stratified Analytifications). The analytification functor from SGA1.XII can be
enhanced and extended to

(—)& : StrSchf® — StrTop, (=) Bduse, : PSh™™!(StrSchi) — StrTop

where the first functor preserves finite limits, the second one preserves small colimits, and the
following diagram commutes:

(=)™

Schift Top
thmT Tthstr
StrSchift ------- T » StrTop

. |
PShsmall(StrSchilt) TN StrTop.

“This notation differs from the one used in SGA1 [Ray71], where Y*® denotes the complex analytic space and not
its underlying topological space.



Similarly, for any (Y,s) € StrSCh}ét, there are functors

(=)Gp : Grp(StrSch}Cft/(sz)) — Grp(StrTop (y, gy ),
(=) ProGrp ProGrp(StrSch(lét/(y’s)) — Grp(StrTop (y, gyan ),

which preserves small limits, making the following diagram commute

1t (=)

StrSche” /(y o) StrTop /(y,syen
thgrpT Tthgrp
Grp(StrSch}cft/(Y,s)) ***** (:22}2}1*"* Grp(StrTop /(y,g)an)

;V\[

(—)&%ar
ProGrp(StrSch%ét/(Y’s)) —————— LN Grp(StrTop /(y,g)an)-

Proof. Let us first see how to promote the analytification functor to StrSch}ét. Let (Y,P,s: Y%
Alex(P)) be an element of StrSch}ét. The map ¢y : an(Y) — Y gives a map of topological spaces
gog?p Y2 — Y722 Define s to be the composite

s = 50 P L YA Y2y Alex(P).

Let (f,r): (Y,s) = (W,s') be a stratified map. Consider the map an(f) : an(Y) — an(W): by
definition the map an(f) fits in the commutative diagram

an(Y) nld), an(W)

or | Jew

y — 1 ow

(by covariance in W). Forgetting the sheaves, we have the commutative diagram

yan 7, an(W)

v w
Zar fzar Zar
yer — 5 W

1k

Alex(P) —— Alex(Q).

Therefore (f2%,r) is a map of stratified spaces (Y2, s2%) — (W32 s'*"). This defines a functor
(—)& . StrSchif' — StrTop, (Y,s) = (Y, s*)) and (f,r)+— (f*,r),

which enhances (—)* : Schi® — Top. This functor still preserves finite limits. Indeed, take
F— StrSch}ét a finite diagram: then by Remark 2.4

acel acl acel acel

an Zar
<lin}17(Ya, P, sq: YaZBLr — AleX(Pa))) = (lim Y,,lim P,, s : <lim Ya> — lim Yazar — Alex(lim P,
(1S

)



By the definition of (—)& and by the fact that the original (—)*" preserves finite limits, this in
turns is equal to

Zar
(ilé% Y, (EEHFI‘ Py, s™: clylé% yor — Q}é% Ya> — ilé% vz Alex(iienfl? Pa)> .

By the universal property of limits, the map lim,epr Y2* — (limaep Ya)zar — limyep Yazar coincides
with the limit map limgerp Y2 — limger Yazar. Hence the statement.
Therefore, given a stratified scheme (Y, s), we can consider the slice category on it and get the
functor
1f
(7)21&‘ : (Strsch(ct)/(y’s) — StrTOp/(Yanvsan).
Since Str'Top is co-complete (see Remark 2.2), then by the universal property of the free co-completion,
the left Kan extension exists
StrSchi* % Str'Top
o
N -
‘[ - (7)%’118hstr

PShs™all(StrSchi!)

and preserves small colimits (see Remark 2.6). Therefore one automatically gets an analytification
functor on PShs™a!(StrSchift).

Let us now focus on the second part of the statement. Since the functor (—)&p, : (StI‘SCh}ét)(y’s) —
(StrTOp)(Y78)an preserves finite limits, it upgrades to a functor

(=& : Grp(StrSch}ét/(Yﬁ)) — Grp(StrTop (y,gyan)-

Since StrTop /(y,)an is complete, also Grp(StrTop /(y,g)an) is: see [Lurl7, Corollary 3.2.2.5]%. Therefore,
as before, by the universal property of the free completion, the right Kan extension exists

(=&
Grp(StrSchgt/(Y,s)) S N Grp(StrTop (yan gany)

Ly
;Vj T

Funsman(Grp(StrSch}ét/(sz)), Set )°P
and preserves small limits (see Remark 2.6). Since ProGrp(StrSchi* /(v,5)) is & full subcategory of
the free completion, by restriction we have an analytification functor (—)%,I;OGrp. O

Notation 2.10. By the sake of notation, in what follows we will usually use (—)*" for any of the
previous analytification functors.

3 The Ran Grassmannian as a stratified presheaf

In this Section we recall definitions and properties within the Geometric Langlands needed for the
rest of the paper, and we also prove some details/folklore properties, see in particular Recall 3.6,
Proposition 3.13, Lemma 3.19, Lemma 3.24, and Section 3.4. Two sources containing very good
introductions to the affine Grassmannian and the Beilinson-Drinfeld Grassmannian are [Zhul6] and
[BR18]. Other useful properties of the Ran Grassmannian can be found in [Tao20].

°In [Lurl?7, Corollary 3.2.2.5] the statement is about the category of commutative monoids in StrTop J(van,gany being
complete, from which the case of group objects is easily deduced.



3.1 The stratification on the affine Grassmannian

Here onward, G will be a complex reductive group, and X a smooth (not necessarily proper)
connected complex curve.

Notation 3.1. Let R be a C-algebra: X (R) will denote the set of maps Spec R — X and Xp will
denote the product X x¢ Spec R. We denote by Affc the category of affine C-schemes.

For a scheme Y, Bung(Y') is the groupoid of étale G-torsors over Y. Let us fix Tg a trivial
G-torsor over Spec C: for any S € Schc we denote by 7 g its base change along the structural map
S — SpecC.

Recall 3.2 (Definition of Grg). [Zhul6, (1.2.1)] The affine Grassmaniann is the presheaf Grg :
Afi? — Set sending

Spec R — {(F7 Oé) c Fe BunG<SpeCR[[t]])7 Qo f’SpecR((t)) = TG’,SpecR((t))}/ ~

where (F,a) ~ (G, 3) if and only if there is an isomorphism v : F =+ G whose restriction makes the
following diagram commute

Ylspec R()

T

TG Spec R(®)-

Flspec R®) Glspec R(®)

(N) (N)
G

By [Zhul6, Theorem 1.22], Gr¢ is ind-representable by a colimit c](\)[1>ir0n Grg /, where each Gry 7 is a

projective C-scheme and the transition maps are closed embeddings.
By [Zhul6, Proposition 1.3.6], Grg can also be described as the étale sheafification

Gre ~ [LG/U G], (3.1)

ét

where LG, LG are étale sheaves in groups defined as
L*G : Aff? — Grp and LG : AiY — Gip
Spec R — G(R][t]), Spec R — G(R(()).
By [Zhul6, Proposition 1.3.2], the presheaf L*G is representable by the inverse limit
LTG ~ rlégb LG,
where LG is the affine group-scheme of finite type over C representing the functor
L™G : AffY — Grp
Spec R — G(R][t]/(t™)).
Fact 3.3. As proven in [Ces24, Theorem 3.4], the quotient presheaf LG/L*G is already an étale

sheaf. Indeed every complex reductive group is split®, hence totally isotropic (see [Ces24, Example
3.2]). Therefore in equation (3.1) we do not need to sheafify.

SEvery reductive group over a separably closed field is split because it contains a maximal torus [Mill5, (22.23)]
and every torus over a separably closed field is split [Mill5, (14.25)].

10



Thanks to Fact 3.3, the schemes Gr(G ) have a very explicit description.

Recall 3.4 (Cartan decomposition). Fix a maximal torus 7' C GL,, and let X,(7") be the group
Hom(G,,, T of coweights of T'. Fix a set of positive coroots UT of T" and denote by Xo(7)" the set
of dominant coweights of T. Endow X,(7") by its usual partial order, namely

v<p = p—-veN- Ut

This restricts to a partial order on Xo(7)*. Finally fix an embedding of posets Xe(T)" < N™. Then
one has the identification

GrGL ~ {[M] € GL,(R(#))/GLy(R[t]) : M has a Cartan decomposition M = ADB,
where A,B € GL,(R[t]) and D = diag(t™",...,t7") with 0 <1, <--- <1y < N},

In the case of an arbitrary G, fix a faithful representation p : G — GL,, for some n, and this
induces a closed embedding Grg < Grgr,, (see [Zhul6, Proposition 1.2.5, 1.2.6]). One then defines

the Gr( )’s as the preimage of Grg\& in Grg. Note that p also provides an embedding of posets
Xo(T)T — N,

Recall 3.5 (Stratification of Grg). By [Zhul6, § 2.1, Proposition 2.1.5], the orbits of the action of
LG on Grg by left multiplication are smooth quasi-projective schemes of finite type over C. They
are called Schubert cells Grg,, and they are indexed by p € Xo(T)™".

Given 1= (i < -+ < 1) € Xo(T)" then

Grar, u(R) ~ {[M] € Grar, (R) : M = ADB,with A, B € GL,(R[t]) and D = diag(t™**,...,t7#")}.

In general, Grg , is the preimage of Grgr,, ,, via the closed embedding Grg < Grgr,, mentioned in
Recall 3.4. In particular,

Grg, = U Grgy, and (Grg'), 4= U Grg -
v<p 1N

Therefore {Grg .} ex,(r)+ gives a stratification of Grg, making (Grg,Xe(T)") an element of
PShsmall(StrSchif!).

Recall 3.6. The action of LTGL, on Grgy, restricts to each Grg\&: indeed the action is a
left-multiplication by a matrix with coefficients in R[t], so the order of the poles does not increase.
Moreover (left-)multiplication by a matrix of the form A’ 4+ tVB’ € LTGL,(R), where A’ €
GL,(R), B’ an n x n matrix with coefficients in R, sends M to A’MC with C' € GL,,(R][t]) (because
N solves the poles in M). Hence the action factors through GL,,(R[t]/t R[t]) ~ GL,(R[t]/t"): so
we get LNGL,, x Grg\]l — Grg}?n.
Thanks to the closed embedding Grg — Grgy,, we recover the above statements for the general
case:

YN €N, 3my :¥m>my LG x Grl) — Grly).

Remark 3.7. In general, Grg (and Gr(GN)) is not reduced”, while the Grg,, are.

"It is reduced, for example, when G is semisimple and simply connected ([Zhul6, Theorem 1.3.11]), but for instance
it is not if G = G ([Zhul6, Example 1.3.12]).
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3.2 The stratification on the Beilinson—Drinfeld Grassmannian

Denote by Fin>1 g the category of non-empty finite sets with surjective maps between them.

Notation 3.8 (Graphs of points). Let R be a C-algebra, I € Fin>qguj and 27 € XI(R). Let
pr; : X — X be the projection on the i-th coordinate and denote by z; the composite pr; o 7. We

denote by I';, the closed (possibly nonreduced) subscheme of X corresponding to R-point of Hilb';|

Via

Spec R — X! — Sym‘fcl ~ Hilb‘)?.

This subscheme is supported over the union of the graphs I';,. For instance, if R =C, I = {1,2}
and x1 = x2 is a closed point of X, then I';, is the only closed subscheme supported at the point
and of length 2.

Recall 3.9 (Definition of Grg xr). [Zhul6, §3.1] For any I € Finx1suj, the Beilinson-Drinfeld
Grassmannian of power [ is the presheaf

Grg xr : Aff? — Set,

Spec R+ {(z1,F,a): 1 € X'(R), F € Bung(Xg) and « : Flxp\rs, — TG,XR\FII}/ ~,

where (27, F,a) ~ (yr,G, ) if and only if 27 = y; in X'(R) and there is an isomorphism v : F = G
whose restriction to Xpr \ I'y, makes the following diagram commute:

r YIxp\Ta; g
X\, Xp\Ts,

N T

7’GuXR\FJ)I °

As shown in [Zhul6, Theorem 3.1.3], the functor Grg y: is ind-representable by a colimit of projective

X1_schemes Gr(N)

& x1» and the transition maps are closed embedding.

If I = {«}, for any point z¢ : SpecC — X we have Grg x xx {0} ~ Grg ([Zhul6, §3.1]): if
X = A}C, using the translation automorphism of A%:, we get a splitting Grg AL = A}C x Grg. However,
in general no such splitting is guaranteed: what we have instead is that Grg x is isomorphic to a
“twisted product”, as we now recall.

Recall 3.10 (Formal coordinates and the torsor X). Fix an R-point z : Spec R — X and write the
map (z,idg) as an isomorphism 7, followed by a closed embedding

Spec R 5 T, <% Xp.

Let @1“1 be the limit of quasi-coherent sheaves of O x ,-algebras hﬁ% Oxx /It . Then we get a diagram
nz
of the form

Spec R i | o Xr

~




A formal coordinate at = is a map Z : Spec R[[t] — X such that Z|;—o = = and such that it factors as
i=01

Spec R L I, o Xgr

~

J [ <

Spec R[t] /N SpecXR(@pm)

where 7 is an isomorphism. The presheaf of formal coordinates is then defined as
X: AP — Set,
Spec R — X (R) = {(x,n) : © € X(R),n : Spec R[] = Spec, (Or,) such that n)—o = 1.}

R

Let 7 : X — X be the projection (x,n) — x. Then we have an action of the ind-group-scheme
AutcC[t] on it by L
AutcClt] xx X = X, (g,2,n) = (2,m09).

This makes X into a right Aut-C[t]-torsor over X (see [BDO05, §5.3.11]).

Recall 3.11 (Twisted product). [Zhul6, §0.3.3]. Consider the right-action of AutcC[t] on Grg by
pull-back, g - (F,a) — (¢*F,¢g*a). Given the AutcC[t¢]-torsor X and the AutcC[t]-functor Grg,
their twisted product® is

X xAutcClt] Grg = ()A( X GrG/MCC[[tD,t

with AutcC[t] acting diagonally.

Remark 3.12. The functor X is an étale torsor. Indeed, the e curve X is étale-locally isomorphic to
Al. In this setting Xp is Spec R[t], the ideal I, is (¢t —r), 7 € R, and thus Or, ~ R[t]. Moreover
when X = A} the twisted product X xAutcClt Gre, indeed trivializes as Al x Gr. Hence, the twisted
product is étale-locally a product X x Grg.

Proposition 3.13. There is a (noncanonical) isomorphism
Grg x ~ X xAutcClt] G,

Proof. Let x : Spec R — X be an R-point. Recall that the Beauville-Laszlo theorem [BL95] tells us
that the restriction map Bung(Xg) — Bung(Xg \ I'z) fits in the equivalence of categories

Bung(Xr) ~ Bung(Spec R[t]) XBung (spec r@)) Bung(Xr \ T'z). (3.2)
This induces a morphism of presheaves
X x Grg — Grx, (@0, F,a)] ~ [(z, F,q)] (3.3)
where (F,«) is a pair such that
N EF = F, 0ldpec ryae ~ @

which is uniquely determined (up to isomorphism) by (3.2). Note that (3.3) is AutcC[t]-equivariant,
because for [(z,n o0 g,g*F, g*@)] the same pair (F, a) works fine:

g F =g "(n"i5F), g'a=g"(n"ita).

81t is also called contracted product.
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Therefore we get a map of presheaves
X x Grg/AutcC[t] — Gry,
which then induces a map between the étale sheaves
X x2ueCl Gry — Gry. (3.4)

The map (3.4) is an isomorphism. Indeed, up to passing to an étale chart parametrized by A},
it can be rewritten as the identity map

A x Gr — A{ x Gr

(the fact that it is the identity comes from the fact that the identification of Gr AL With Al x Gr is
exactly the Beauville-Laszlo gluing procedure used in the definition of the map (3.4)). O

Recall 3.14. ([Zhul6, §2.1 and Theorem 1.1.3]) By definition of Grg, and Gr(GN), the action of
AutC[t] on Grg restricts to each orbit and to each Gr(GN): therefore one can set

Grgx, ~ X x2Cl Grg . Grgx <, = X x2%CM Grg o, and Gr(G))( ~ X xAutcCl] Grg ),

With this description, it is clear that {Grg, X7u}u§ n~ are reduced schemes defining stratifications

on the Gr(GJY))(’s, which are compatible with the transition maps in N: therefore we have Grg x €
PShemall(StrSchif!).

Recall 3.15 (Stratification of Grg xr). ([Nad05, §4.2] and [CvdHS22, 4.3]) Fix I € Finx suj and
consider a surjection ¢ : I — J of non-empty sets: define then

X? = {27 € X : ; = z; if and only if ¢(i) = ¢(j)},

which are locally closed subschemes of X!. The resulting stratification (X', s;) is known as the
incidence stratification.
By [Nad05, Proposition 4.2.1], we moreover have an isomorphism

|7
GI‘G,)(¢> = GI‘G7XI|X¢ 1) (H Grg7x) N (3.5)
disj

=1

where the right hand side is the open subsheaf of ]_[IJ‘]:l1 Grg, x where the points (z1,. .. ,xu‘) e xVI
are distinct. Isomorphism (3.5) is usually called the factorization property. This factorization over

X restricts to Gr(G s1lxs by its definition (see [Zhul6, Thm. 3.1.3]): therefore

||
disj

For any v = (v}, ..., vl"l) € (Xo(T) )Yl we get a locally closed subsheaf of Grg xo defined as

|| ||
Grg xo, = (H GTG,X) N 11 Grexu- (3.6)
disj

J=1 J=1
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Let Pr be the set {(¢ : I — J,v)}g,: we say that (¢ : I — Jv) < (¢ : I — J',/) if and only if
there exists a surjection ¢ : J' — J such that ¢ = ¢ o ¢’ (so ¢ identifies more coordinates than ¢')
and for every j € J

v; < Z 1/]'-,.

j'ey=Hs}

(N)
G, x1
fore equation (3.6) defines then a stratification of G making (Grg xr, Pr) an element of

G,XI Y
PShsmaH(StI‘SCh(lét)/(XIVSI) .

Note that for any (¢,v) € Pr we have Grg xeo, C Gr for every N big enough. There-

With the same proof as the factorization property (3.5), one obtains

Proposition 3.16. Let I,J € Finxq gurj. Let (XI X XJ) ~ be the subscheme of points

isj
(xla"'7$\I\7y17-"7y|J|)

where I'y, NT'y, = & whenever i € I,j € J. There is an isomorphism of stratified ind-schemes

(Gryr X Grys) Xx1yx7 (XI X XJ) ~ Gryrus X xIyxJ (XI X X‘])

disj disj

3.3 The Ran Grassmannian

It is often helpful to combine the ind-schemes Grg xr into one presheaf. Let us start by gluing
together the different X’s.

Definition 3.17 ([Zhul6, Definition 3.3.1]). The Ran presheaf of X is the functor of unordered
non-empty finite sets of distinct points on X
Ran(X) : Afi — Set,
SpecR — {x ={z1,...,2r} C X(R) non-empty and finite}.

This is what is called Ran“(X) in [GL, Definition 2.4.2].

Remark 3.18 (Diagonals). For each surjective map ¢ : I — J call Ay the associated diagonal
embedding
Ag: X7 — X1 z'; — z; where Jh'zmiz;(i)-

Lemma 3.19. We have an isomorphism of functors

Ran(X)~ colim X!’

. Op
IEszl,surj

where the transition maps are the Ay’s.

Proof. Fix I € Finx>1 gurj. Consider the unordering functor
Ur - XT — Ran(X), rr = (21,...,2)) = {2y, ..., 2}

where we forget the order of the z;’s and we do not repeat maps that are equal. So k is the number
of different maps in x7. Notice that for any ¢ : I — J, U; = U; o Ay4. Hence we get a well-defined
surjective map

U: colim X! — Ran(X).

.. op
IEFIHZl,sur,j
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Let us check that it is injective as well. Suppose that 27 € X! and z;» € X!" are sent to the same
{«1,...,2}}. Fix an order on {«},...,2}}: (¢],... ,mi‘”) where J has cardinality k. Then define

oI —J, ¢(i) = j such that z; =
I — J, #(i') = j such that x; = $3
Then any map ¢’ : I — I’ such that
¢'(i) =i == pod'(i) =(i)

tells us that x; and xj» are the same element in the colimit. This proves that the transformation i/
is an isomorphism. ]

Remark 3.20. Note that Ieg;)nloign X' is not a filtered colimit, and in fact one can show that
Ran(X) is not even an étale sheazflgg?. [GL, Warning 2.4]).
Definition 3.21. The Ran Grassmannian associated to G and X is the presheaf?
Grg Ran(X) Aff? — Set,
Spec R — {(z, F,a) : z € Ran(X)(R), F € Bung(Xg), o : Flxp\r, = Taxp\Tot/ ~

(where the equivalence relation is the analogous of the one for Grg; 7 - see Recall 3.9). On morphisms,
Grg Ran(x) sends

Spec S 2 Spec R = [(z, F,a)] = [(z o f, (id x f)*F, (id x f)*a)].
Definition 3.22. Define d, : Grg x7 — Grg yr to be the morphism
(2], Fr o) = (Ag(ah), F, ).
Note that this definition is well posed since I';, = I'a o(at)) A8 closed topological subspaces of Xg.
Lemma 3.23. The maps d4’s are stratified.
Proof. First, it is easy to see that Ay is stratified with respect to the incidence stratification. As
for 64, it sends the stratum Grg xv , indexed by ([J % J,v e (Xe(T)H)') of Grg xo into the
stratum Grg yuwos , indexed by ([I vy JN,ve (X (T)H of Grg x1. O
Lemma 3.24. For each I € Finx>1 gurj,
Grg xr ~ X' XRan(x) GG Ran(x)
where the map X! — Ran(X) is Uy. Moreover, there is an isomorphism of presheaves

GrgRan(x) =~ colim  Grg xr

oD
IGFanLSUYj

where the transition maps in the colimit are the d4’s.

?Other versions of the Ran Grassmannian are considered in [GL, Definition 3.2.3]. If mo denotes the functor
Fun(AffiZP, groupoids) — Fun(AffZP, Set)

induced by 7o : {groupoids} — Set, then
Grg,Ran(x) =~ moRang (X)

where the right-hand-side is in the notations of loc.cit..
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Proof. The first part follows directly from the definition, since for any z; € X?(R), I';, only depends
on Ur(xy).
Therefore, by universality of colimits, we get

. ~ . I ~ . I
COlolm GrG,XI — COIOIIII (X X Ran(X) GrG,Ran(X)) — COI(}H] X X Ran(X) GrG,Ran(X)
IEF1H>p1 surj IEFln>pl surj [EFln>pl surj

which is isomorphic to Grg ran(x) by Lemma 3.19.
The second part of the statement follows straightforwardly by looking at Definition 3.22: the
essential point is that the definition of 'y, only depends on image of x; under the map U : X' —

Ran(X). O

Remark 3.25 (Stratification of Ran(X) and of Grgran(x)).- Lemma 3.19, Lemma 3.23 and
Lemma 3.24 allow to endow Ran(X) and Grg ran(x) with a stratification. Indeed, one can view the
two colimits

. . . . N
colim X7, colim Grg yr = colim  colim Gr(G ))( I (3.7)
IeFinZ, _ . I€eFin?® _ . ’ I€eFin® . NeN ' )
>1,surj >1,surj >1,surj

as colimits in PShsmaH(StrSch%Cft), because XI,GrgV))(,’s are objects of StrSch}ét and Agy,d4’s are

stratified maps. More precisely, the forgetful functor Fgt,, : StrSchif® — Schift < PShmall (Schlft)
that forgets the stratification can be left-Kan-extended to a colimit-preserving forgetful functor

Fat., : PSh®™(StrSchift) — PSh*™a!!(Schlft).

str

We hence obtain that

thstr< colimPSh(StrSChgt)XI> ~ Ran(X), and thstr( colimPSh(StrSCh}C&)GrG’X1> ~ Grg Ran(x)- (3-8)

.._Oop 3 OP
Ieszl,surj IGFIHZl,surj

By abuse of notation, from now onwards, Ran(X) and Grg ran(x) will always be understood as
objects in PSh¥™a!!(StrSchi), i.e. as the arguments between brackets in (3.8).

3.4 The action of L*GRran(x) on Gre ran(x)

Notice that the action LTG x Grg — Grg is a stratified map once one endows LT G with the trivial
stratification.

After recalling the generalization of LTG to the Beilison-Drinfeld setting and then to the Ran
setting, we will see that also in these cases one gets stratifed actions.

Recall 3.26 (Infinitesimal formal neighbourhood). Given z; € X!(R), denote by @[‘Il the sheaf of
rings lig(l) Ox, /IIT“LI,' Recall that this limit does not depend on the scheme structure of the closed

I';;, but only on its topology. Denote by fx, the relative spectrum SpecXR(@FII):

ix[
I, — 1 & Xp

-

rr
r,, = SPeCXR(OFz,)

In the case of I = * this recovers the map i~ and the scheme T, = SpecXR(@px) of Recall 3.10.

Hence ', ; can be viewed as an infinitesimal formal neighborhood of I';,. By abuse of notation, we
will denote by i also its restriction to the open I'y; \ T'y,.
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Recall 3.27 (Beilinson-Drinfeld version of LT G). For I € Fin>1 surj, define

LTGxr : AfiY — Set, Spec R — {(21,9) : 21 € X'(R),g € G(T'y,)}.

Note that G(I'y,) ~ Aut(7, 7 ) (because any G-equivariant automorphism 7, =~ G x Iy, —
Loy xr

G x T, over I, is determined by {eg} x Ty, = G).

Remark 3.28. Let I = %, X = A{. and consider the point 0 : Spec C — A{. Since R[t] ~ @Fo then
Aut(TG Fg) = Aut(TG,Spec R[[t]]) and L+GA%|0 ~LtaG.

Remark 3.29. Consider
L™Gy1 : AfffP — Set, Spec R — {(x1,9) : 21 € X (R),g € GT)}

where I'}? is a short-hand for Specy, Ox, /7" r These are smooth group X’-schemes and there is

an isomorphism
L+GXI ~ lim LmeI
m>0

(see [Rasl8, Lemma 2.5.1]). Consider the forgetful functor L™G s — XT: pulling back the
incidence stratification on X', we give a stratification to L™ G yr, making L*G v an element of

ProGrp (StrSch}ét/(ngl)).
Definition 3.30 (Ran version of LTG). Define

L+GRan(X) : AffP — Set, Spec R+ {(z,9) : x € Ran(X)(R), g € G(fz)}

This is well defined because as said before the scheme @p£ depends neither on the order of the points
nor on the schematic structure of I'; (only on its topology).

Lemma 3.31. For any I € Fin>1 gurj,
I
L+GX1 ~ X XRan(X) L+GRan(X)-
Moreover, there is an isomorphism of presheaves

L+GRan(X) ~ colim L+GXI,

._op
IeFanl,surj

where transition maps are 65" : (x1,9) = (Ag(zr1), 9)-

Proof. The first part follows from the definitions, since for any z; € X!(R), T, , only depends on
Ur(xr). The rest of the proof is analogous to the proof of Lemma 3.24. O

Proposition 3.32. The complex presheaf L+GRan(X) can be promoted to an element of
Grp (PShsmaH(ProStrSch}ét)/(Ran(X)’sRan)).

Proof. Recall that LT G y: is a pro-group object in ProGrp(StrSch}ét/(vasl)). Forgetting the group

structure, it can be viewed as an element of (ProStrSch(lét)/(XIVSI) < PShsma“(ProStrSchgt)/(Xlﬂ).
Considering the map
LTGyr — X! — Ran(X)
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we actually have that LYGy: € PShsman(ProStrSchgt)/(Ran(X)75Ran).
argument done in Remark 3.25, by Lemma 3.31 the functor L+GRan( x) can be seen as an object of
1l If
pPShme (PYOStrSCth)/(Ran(X),sRan)‘
Moreover, there is a natural “relative multiplication” given by

Therefore, with the same

L+GRan(X) XRan(X) L+GRan(X)’ (Iv g)'(£7 h) = (imgh)' (39)

This does not quite make L+GRan(X) into an object of Grp (PShsmaH(ProStrSCh(lét)/Ran(X)), in that
we need to upgrade this multiplication structure to the stratified level. To do so, we present it in a
different way: namely, combine Lemma 3.31

colim (L+GxI X xI L+GXI> >~ colim ((L+GRan(X) XRan(X) XI) X xI (L+GRan(X) XRan(X) XI))

.._Oop .._Op
IeFanl,surj I€F1n21,surj

with universality of colimits in PSh(ProStrSchi) J(Ran(X),5Ran)

COIIim (XI XRan(X) <L+GRan(X) XRan(X) L+GRan(X)>) = L+GRan(X) XRan(X) L+GRan(X)- (310)
to get an isomorphism

L+GR&H(X) XRan(X) L+GR&H(X) ~ colim (L+GXI Xxj L+GXI)

._op
IEFlnzl,surj

in the category PSh(ProStrSch(lét)(Ran(x)’sRan). In this way, the multiplication law (3.9) can be
presented as arising from the multiplication law of LT G ys by passing to colimits, and hence inherites
the wanted lift to the stratified setting. O

Definition 3.33 (Definition of Grlc‘;’fRan( x))- For I € Fin> quyj, we denote by Grlgfx r the presheaf

GrlngI : AffY — Set,
oy I(py =\~ F ~o N
Spec R — {(z, F,@):zr € X' (R),F € Bung(T'y,), & : ]:|FxI\F;cI — TGI”\F”}/

(where the equivalence relation is the analogue of the one for Grg x1 - see Recall 3.9).
Analogously, define the presheaf

GrlGO,CRan(X) . Aﬁ%p — Set,
Spec R — {(z, F, &) : z € Ran(X)(R), F € Bung(Ty),d : Flz w2 T ot ~
(where the equivalence relation is the analogue of the one for Grg x1 - see Recall 3.9).

Lemma 3.34. There is an isomorphism of presheaves

1 . 1
GrGOfRan(X): colim GrngI,

._op
IeFanl,surj

where the transition maps are 5};’0 (21, F,d) — (A(b(x[),ﬁ,&).

Proof. Analogous to the proof of Lemma 3.24. O
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Lemma 3.35. The restriction map
Grg xr — GrlngI, (z, F,a) = (z,i5F, i>a)
loc »

is an equivalence of presheaves. Moreover, these maps respect (5¢,6¢ s and hence glue to an
equivalence of presheaves Grg ran(x) — GrIGOCRan(X).

Proof. Since these maps commute with the dy, 5};‘”5, it suffices to prove the statement for Grg 1.

Furthermore, since the restriction map commutes with the forgetful functor towards X/, it is enough
to check it is an equivalence on fibers. So let us fix ;7 € X’ (R) and compare the two fibers

{F € Bung(Xg), o Flxpr,, = 76, Xg\, } /s

{F € Bung(Ts,), @ : Fl= l)'TG

Ty \Ta Fup\La, d 1~

Now, the restriction map at the level of fibers coincides with taking the my of the map of groupoids

BunG(XR) XBUHG(XR\FII) {TG,XR\FII} - BunG(FﬂCI) XBunG(FII\FII) {7-6',%1[\1_‘11}’ (311)

where the restriction is again given by Zj : ij \I'z, = Xr\ .

It thus suffices to show that the map at the level of groupoids is an equivalence: this is exactly
the “family” version of the Beauville-Laszlo theorem [BD05, Remark 2.3.7]. Indeed, the restriction
map gives an equivalence

Bung(Xg) XBung(Xp\Ta,) {76, Xp\Ts, } =

Bung(I'z,) XBunc(fz,\Fz,) Bung(Xg \I's,) XBung(Xp\T'z;) {TG,XR\FII}

which is in turn equivalent to the right-hand side

Bung (I'z;) x Bung (Te, \Ts ) {TG,fo\FxI }

O]

Remark 3.36. In particular the functor GrIGOfX is an étale sheaf. Furthermore, for I = *, it is

canonically isomorphic to the twisted product X xAutcClt] Grg. Indeed pick an affine étale cover of

X made of A}C: over the affine line the two descriptions are the same via
(0, F, @) = (, (') F, (1) @).

Remark 3.37. The functor LTG xr acts on Grlé’cx ; over X7 by modification of the trivialization
a— glle\l“z, o @. By Lemma 3.35, we get an induced action over X7/

L+GXI X xI GTG,XI — GI‘G7xl. (312)

Proposition 3.38. The action (3.12